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Wall correction factor for sinking cylinders in fluids
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Using finite difference methods, we study numerically the dynamics of a single spherical(olgjexter) in
a two-dimensional box filled with viscous fluid under the influence of gravity. The algorithm is validated using
the analytic result of the terminal velocity.. in the creeping flow limit. We focus on the dependence of
U.. on the cylinder diameteD and the box size.. By extrapolating the numerically obtained terminal
velocities to the Stokes’ limit —e (D/L—0) for various cylinder diameters, we seek a universal relation
U.(D/L)=U.(0)f(D/L) in analogy to the three-dimensional result for spheres in the creeping flow limit. We
will presentf(D/L) as power series iD/L, and discuss its validity.S1063-651X97)08903-4

PACS numbe(s): 47.55.Kf, 47.11+j, 02.70.Bf

[. INTRODUCTION order in the ratio cylinder to system size. By doing this for
nine different cylinder diameters, we seekiaiversalcurve

When dropped in a vacuum tube, all bodies will fall with for the wall correction factor up to moderate cylinder to sys-
the same velocity, and will be accelerated by the gravitatem ratios and discuss its validity.
tional constanig until they hit the floor. This is no longer ~ The paper is organized in the following way: in Sec. Il we
true when partic|es are dropped in a Surrounding fiioid write down the relevant equations and give the terminal ve-
gas. An additional viscous force acts on the particle, andlocity for spheres and cylinders in the creeping flow limit. In
leads in the equilibrium of forces to a constant sinking ve-Sec. Ill, we briefly explain the numerical technique used and
locity, called terminal velocity This velocity not only de- Present a first approximation of the wall correction factor for
pends on the size of the particle and the viscosity of the fluidcylinders in Sec. IV. We conclude this paper by giving an
but also on the container geometry. From the Navier-Stoke8utlook to possible further applications.
equations in the creeping flow limit one can derive an ana-
Iytic expression for the terminal velocity for spheres moving II. PHYSICAL BACKGROUND
in bounded and unbounded three-dimensional geometries o o
[1]. The ratio of the sphere velocity in the bounded and un- Since the velocities in-our situation are well beI_ow the
bounded case is called tiveall correction factor For two-  SPeed of sound, the fluid is treated as incompressible. The
dimensional systems, the creeping flow equations do ndiynamics of the fImd_are then_glven_by the foII(_)wmg Navier-
have a physical solution, but an implicit expression for theStokes equations written in dimensionless units:
terminal velocity of a cylinder can be obtained by using
Oseen’s equatiord,2]. No analytic expression for the wall
correction factor for cylinders is known.

While cylinders sink in viscous fluids, one finds flow

separation, wake oscillation, and wake shedding with inyyere;; stands for the fluid velocity ang for the pressure

creasing Reynolds number which has been studied extefzeagyred in a fixed laboratory system. A possible external
sively. A literature review is given by Clift, Grace, and We- o - o

ber [3]. Some recent numerical simulations concerning thevolum_e for_ce, €9, gravity, is denoted by The continuity
two-dimensional flow around cylinders af@ Fornberg[4], equation simplifies to

who studied the viscous flow past a circular cylinder and -

investigated the width and length of the wake regi¢m); V.v=0. 2
Feng, Hu, and Josefdk], who looked at the sedimentation ) ) o
of circular and elliptical particles and studied their interac-  1he only parameter that describes the physical situation is
tions with the fluid, the wall, and each other: afwl Chen, f[hz_a d|men_3|onless Reynolds_number Re. lee_n a c_haracter—
Pritchard, and Tavené6] who investigated the stability and iStic velocityU, a characteristic length and the viscosity of
bifurcation of steady flow past a circular cylinder by looking the fluid v:=#/p, its definition is

at the formation of steady vortex pairs. We will use extensive

numerical simulations of the full Navier-Stokes equations to Re:= ut ®)
simulate the sinking of cylinders in two-dimensional, v

bounded geometries. The obtained terminal velocities agree

perfectly well with the implicit expression for low Reynolds In our casdJ will be the terminal velocity of the particle and
numbers when finite-size effects of the numerical algorithnmL its diameter.

are taken into accourf7]. By using nine different system When a sphere moves through a fluid, a viscous friction
sizes we are able to give, as an approximation of the walforce acts on it. In an ideal three-dimensional system where
correction factor for cylinders, an expression up to secondhe fluid is at rest at infinity, this viscous force can be di-

-

O (G V)o=—Vp+ V2 +f 1
57 T V)o==—Vp+ = Vo +i, 1)
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rectly calculated from Eqgs(l) in the creeping flow limit

where one neglects the inertia terrﬁN)J (Re<1) and
obtains[1,2,§|

F,=6mnur. 4)

Herer stands for the radius of the sphere andor its ve-
locity. When this sphere moves under the influence of grav-
ity its velocity exponentially reaches a limiting value which
can be calculated from the equilibrium of forces,

2 —
US=§pS7]pfgr2. (5)
Here p denotes the density of the sphere andhe one of

the fluid. When the sphere moves in bounded geometries,
e.g., along tube with radiug, a wall correction factor has to

be added which can be written as a polynomiat /iR only.

For large aspect ratios to R, considering only the linear
term is often sufficient, and one obtains

vé=vs(1—ar§), (6)

wherea~2.1-2.4[1,3,9.

In two dimensions, the creeping flow equations do not
have a solution that vanishes at the cylinder boundaries and
remains finite at infinity which is known as Stokes’ paradox
[1]. If one works with Oseen’s equations, an implicit formula
for the terminal velocity can be giver,2] which can only ~ where the parametet fulfills 0 <6<1. For§=0 we end up
be solved numerically, e.g., USINGATHEMATICA Or MAPLE, with anexplicit scheme, and fod=1 we get afully implicit
scheme. The former has the advantage that the finite differ-
ence scheme can be written down more easily, but the re-
g (7) e . : : .

v 4 g strictions on the maximal time step for numerical stability
|n(3-7ﬁ) made it infeasible for our casgll,7]. A very efficient
¢ method results foW=3 called theCrank-Nicolson scheme

Another interesting situation arises when the moving parwhich we used to obtain the results presented in this paper. It
ticle approaches another particle or a solid wall. Due to thés second order accurate in time as well, when the parameter
backflow of the fluid, additional repulsive forces come into 7 is set to a value of. The partial differential equations are
play that diverge as the inverse of the separation distanceolved by an iterative procedure which is based on applying
[10]. For ideal smooth surfaces this would mean that thghe artificial compressibility methodat each time step
surfaces never touch each other. This behavior is visible ihl11,12. Since the scheme in E) is linearly uncondition-
our simulations when a particle approaches the bottom walklly stable for #=3, one can choose a maximal time step
It decelerates due to the additional forces from the backflovgiven by the physical situation, which in our case was a
of the fluid, but very fine grids are needed to obtain quantifraction of the grid size divided by the estimated terminal
tative data. The results presented in this paper are merehbelocity. This allows us to obtain the terminal velocity of a
concerned with the terminal velocity and its dependence owsinking particle with much fewer time steps as compared to
D =2r and the system size. The system is sketched in Fig. an explicit algorithm.

1, and the height was chosen s=3L to assure that the In order to avoid unphysical oscillations in the solutions
value of the terminal velocity was not affected by the pres-we use astaggered grid 13] which is usually referred to as
ence of the bottom wall. marker-and-cell(MAC) method [11]. Each grid point on
which a particular velocity component is evaluated is shifted
ll. NUMERICAL IMPLEMENTATION half a grid spacing along its Cartesian direction with respect
to the corresponding pressure value. Another advantage of

When Egs.(1) are discretized in time first, the general this grid is that no boundary values for the pressure are
form reads needed, which is often not available or hard to obtain experi-
mentally. The pressure is only calculated at interior points.

L=2R

FIG. 1. Sketch of the physical system.

ve  _lpempr o,

N 1ol (oMLY *n+1_iv2*n+l_fn+l The generalization of the MAC grid to three spatial dimen-
At v v Re' sions is straight forward.
1 Since we want to study the motion of particles in fluids,
_ “n v\ n__T w2 n_#n ntr_ we have to account for the interactions between particles and
+(1=6)| W™ V)v ReV m+ve 0. ® fluid. For simplicity, we will only treat spherical particles in
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FIG. 2. Vertical velocity as a function of time for different cyl-

) i ) FIG. 3. Extrapolated terminal velocity for the limkx—0 as a
inder diametersD=1, 2, and 3 cntop to bottom, respectively.

function of cylinder diameter. The thick line in the lower left corner

. . . is the analytic solution using Oseen’s equations.
two-dimensional boxes, but other shapes can be easily con-

structed. The grid spacings in different directions are all chodimension of 2% 75 cm. The approach of the terminal ve-
sen as being equalx=Ay(=Az). They must be chosen locity is clearly visible. The rather regular fluctuations for
significantly smaller than the particle in order for our ap-the smallest particleD=1 cm, stem from the fact that the
proach to work. We used values Bf= (3—22)x Ax for the particle covered at most five grid points compared to already
results presented in this paper. The particle can be put at argp for D=2 cm. Since it falls nearly vertically with a con-

arbitrary position in the fluid and all velocity grid points that Stant velocity, the variations in the number of grid points
are covered by the particle will be forced to have the parti_covered by the particle and used in the force calculation are

cle’s velocity at the next time step. This means that the par[elatively Iarge., and they lead to visible regu!ar oscillations.
ticle introduces an additional, moving boundary to our com-':Or larger particles, these regular patterns disappear and the

putation. The force acting on the particle by the fluid isfemaining fluctuations come from the fiuid motion.

. . ) In Ref.[7], we looked at a fixed system size 0fX180 cm
gglg,uslzltsrdfat::ye[l?g]egratlon of the stress tengaover the par and varied the number of grid points for different cylinder

radii in order to study the finite-size effects of our approach.
R The grid spacingAx varied from 0.3125 to 0.078 125 cm,
Fs:J o-ndA, ©) and by linear extrapolation we obtained the curve
surface limy_ovc(r) shown in Fig. 3. For comparison, we also give
wheren stands for the normal vector of a surface elementthe numerically obtained SO".Jtion to EQ?) for Reynqlds
pointing outwards and numbers up to 1 drawn as thick black line. By doubling the
grid size in both directions from 64192 to 128< 384 points
the value ofv.(D) changed by 23% fob =0.5 cm and by

only 4.5% forD=3 cm. Our extrapolated value f&=0.5

Here a matrix notation is used, ahdstands for the unity €M lies exactly on the analytic curve, which validates our

matrix. The stress tensor is evaluated along the Cartesigd9orithm and shows that quantitative data can be obtained

coordinate lines from interior to exterior points along the by this numerical method. o
surface. Whereas the finite-size error due to the grid is a purely

numerical artifact, the dependence of the terminal velocity
on the container geometry is well observed experimentally
[3]. For spheres in three-dimensional systems an analytic ex-
At time t=0, we place a cylinder at rest in our two- pression exists for the creeping flow limit. The relevant pa-
dimensional system sketched in Fig. 1. The force acting omameter is the ratio of the sphere diameter to the tube diam-
the cylinder is calculated via integration of the stress tensoeter (D/L). The ratio vs(D/L)/v¢(0) is called the wall
over its surface. For small times the sinking velocity is givencorrection factor, and a first approximation, lineatii_, is
by v¢(t)=~ —gt, since the viscous forces are still negligible. given by Eq.(6) [1,3,9]. For cylinders in two dimensions one
With increasing velocity the viscous forces become largercannot derive an analytic expression for the wall correction
and finally an equilibrium of forces leads to a constant sinkfactor, since not even an explicit formula fof :=v.(0)
ing velocity which depends on the diamef@r the system exists. We used extensive numerical studies using the im-
dimensionL, and the viscosity of the fluidy. This is shown plicit method outlined in Sec. Il to obtain an expression for
in Fig. 2, where the sinking velocity as function of time is the wall correction factor for cylinders. The diamekewas
presented for three different cylinder diameters and a boxaried from 0.5 to 3.5 cm, the grid spacing was set to a

o=—pl+ (Vo +(Vo)h. (10)

IV. WALL CORRECTION FACTOR
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(b) () t=12s t=23s t=35s

Re = 18.0 Re = 28.6 Re = 33.6
FIG. 4. Streamlines for box sizes of X@0 cm(a), 20X 60 cm FIG. 5. Streamlines for a particle with diameter of 2.8 cm in a
(b), and 3090 cm(c), and a particle diameter of 2 cm. box of 3090 cm at different times after particle release.

constant value oAx=0.156 25 cm in order to avoid finite- which is the start of the wake oscillations found experimen-
size effects, and the viscosity of the fluid was set to 1 g/cm stally [3].
which is 100 times the value of watéwvater-glycerin mix- It is reported that for cylinders wake oscillations start for
ture or certain oils Since the only parameter that enters theRe > 30, and wake shedding for Re 40 [3]. To demon-
Navier-Stokes equatior(q) is the Reynolds number one can strate that our algorithm is capable of resolving this change
equally well consider water and divide all lengths by 100. in flow pattern for the grid sizes used, we show in Fig. 5 the
All four boundaries are considered as solid containecomputed streamlines for a sinking particle with diameter of
walls with a no-slip boundary condition for the fluid. In order 2.8 cm in a box of 3& 90 cm at different times after particle
to quantify the effect of these boundaries, we show in Fig. 4elease. The patrticle is located between the two lowest vor-
the computed streamlines for box sizes of<IZD cm (a), tices, and the grid size was again>6492 points. The termi-
20x 60 cm(b), and 30<90 cm(c). The corresponding times nal velocity was—20.5 cm/s, which was reached after 1.5 s
after particle release are 3.6(&, 7.2 s(b), and 1.1 s(c), and gives Re= 57.4. The wake oscillations which lead to
respectively, and the particle diameter is 2 cm. The particle isvake shedding in this case are clearly visible in the third
located in the middle between the two vortices, and the Reypicture when the particle has nearly reached the bottom wall.
nolds numbers calculated from the particle’s diameter and@imilar pictures can be found in Rd6] for the settling of
velocity are shown in the figure. The grid size wascircular and elliptical particles.
64% 192 points. Due to the backflow effect, the particle set- In Fig. 6, we show the values of the terminal velocity for
tling is strongly affected by the ratib/L for the geometries cylinders with different diameters as function of the ratio
consideredcf. Fig. 2. The two vortices have the same size D/L. The top curve is foD=0.5 cm, andD was varied in
for case(a), but become clearly asymmetric for ca&s, steps of 0.5 cm to giv® = 3.5 cm for the lowest curve. The

0 | | | ! |
Ve
[em/s]
-10 . .
FIG. 6. Terminal velocity as
function of the ratioD/L. Each
curve corresponds to a different
cylinder diameter withD=0.5,
1,15, 2, 2.5, 3, and 3.5 ciftop
20 to botton).
| I 1 1 |

D/L
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30 TABLE |. Coefficientsa; anda, for the quadratic approxima-
L tion f(D/L) for different cylinder diameterp.

(o]

fem/s]

D 05 075 10 125 15 20 25 3.0 35

a, 186 099 153 098 099 097 116 1.14 1.10
a, 6.34 523 107 221 151 113 046 033 0.34

fit was obtained by (D)=9.2 D%® which is shown as a
solid line. But the formula is only valid in this limited regime
since towards both end points systematic deviations are al-
ready visible. Also the slope in the limit lign,qv; does not
agree with the analytic result, E¢).

By looking at Fig. 6, one might hope that by shifting and
stretching each curve all curves will fall on one universal
curve. In order to test this we use as ansatz for the wall
correction factor for cylinders

D [cm]
v(D/L)
FIG. 7. Extrapolated terminal velocity for the linit/L—0 as a f(D/IL):= ———. (11
function of cylinder diameter. Ve

solid lines are quadratic least square fits for data points be-l—_hIS ratio is plotted in Fig. 8 for cylinder diameters ranging

longing to each value ob. It is remarkable that all data fro_m 15t 3.5cm. A quadratic_: Ie_ast square fit using all _data
points lie on the corresponding curve points shown is drawn as solid line. The smaller the diam-

By extrapolating each curve tB/L—0, we obtain the eter, the more the data points systematically deviate from

value of the terminal velocity . (D) for an infinite system. this universalcurve for larger ratiod/L. ForD=0.5 and

These are plotted in Fig. 7, where the error bars are less thaln'o cm only the two leftmost points will lie on this curve. To

the symbol size. This can be directly compared with Fig. 3.quant|fy this result we write
Please note that the curve fBrL— 0 starts off too high at D D
D=0.5 cm compared to the numerically solved implicit f(D/IL)~1—a;— —a,| —
equation(7), since finite-size effects could not be taken into L L
account due to computer limitations. Nevertheless, by using ) ] )
the results presented in RéfZ], one can estimate that the @nd give the values ok, and a, in Table | for different

value foru(0.5) will reduce by 50% but only by 10% for cylinder diameters. The larger the diameter becomes, the less

v¢(3.5). This will bring the solution of the analytic result important the quadratic term in formu(a2) becomes, which

and the numerical simulation in perfect agreement againr_ne_ans that as af_mal result for the wall correction factor for
ylinders we obtain

Figure 7 also shows that the terminal velocity does not havé
a simple scaling relation with the cylinder radius, and a good

2
; (12

ve(D/L) D
——=—~|1-1147]. 13
1.0 T T T | ! UC
U/
£ - -
Ve V. CONCLUSIONS AND OUTLOOK

0.8 |- -
We studied the motion of cylinders under gravityo-
dimensional systejmin viscous fluids and bounded geom-
0.6 |- - etries. The dependence of the terminal velocity of the cylin-

der on the diameter to box width ratioD(L) was
investigated numerically using the full Navier-Stokes equa-

04 - N - tions. We obtained a first approximation of the wall correc-
| S _ tion factor as a power series /L and discussed its valid-
ity.
0.2 I The presented algorithm, an implicit finite difference
- _ method, is easily extendable to studying real three-
' dimensional systems, and will be used to go beyond the
0~00 o : 0'2 : 0'4 0.6 creeping flow result for the wall correction factor of spheres,

Eq. (6). When more time is spent to achieve a faster conver-
D/L gence of the numerical method, e.g., using conjugate-
gradient or multigrid methods seem promis[dd], it will be
possible to study lubrication effects and sedimentation prob-
lems in more detail as well.

FIG. 8. Rescaled terminal velocities as a functiorDdt.. The
solid line is the best quadratic fit to the data points.
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