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Wall correction factor for sinking cylinders in fluids

Gerald H. Ristow
Fachbereich Physik, Philipps-Universita¨t, Renthof 6, 35032 Marburg, Germany

~Received 29 February 1996; revised manuscript received 22 July 1996!

Using finite difference methods, we study numerically the dynamics of a single spherical object~cylinder! in
a two-dimensional box filled with viscous fluid under the influence of gravity. The algorithm is validated using
the analytic result of the terminal velocityU` in the creeping flow limit. We focus on the dependence of
U` on the cylinder diameterD and the box sizeL. By extrapolating the numerically obtained terminal
velocities to the Stokes’ limitL→` (D/L→0) for various cylinder diameters, we seek a universal relation
U`(D/L)5U`(0) f (D/L) in analogy to the three-dimensional result for spheres in the creeping flow limit. We
will present f (D/L) as power series inD/L, and discuss its validity.@S1063-651X~97!08903-4#

PACS number~s!: 47.55.Kf, 47.11.1j, 02.70.Bf
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I. INTRODUCTION

When dropped in a vacuum tube, all bodies will fall wi
the same velocity, and will be accelerated by the grav
tional constantg until they hit the floor. This is no longe
true when particles are dropped in a surrounding fluid~or
gas!. An additional viscous force acts on the particle, a
leads in the equilibrium of forces to a constant sinking v
locity, called terminal velocity. This velocity not only de-
pends on the size of the particle and the viscosity of the fl
but also on the container geometry. From the Navier-Sto
equations in the creeping flow limit one can derive an a
lytic expression for the terminal velocity for spheres movi
in bounded and unbounded three-dimensional geome
@1#. The ratio of the sphere velocity in the bounded and
bounded case is called thewall correction factor. For two-
dimensional systems, the creeping flow equations do
have a physical solution, but an implicit expression for t
terminal velocity of a cylinder can be obtained by usi
Oseen’s equations@1,2#. No analytic expression for the wa
correction factor for cylinders is known.

While cylinders sink in viscous fluids, one finds flo
separation, wake oscillation, and wake shedding with
creasing Reynolds number which has been studied ex
sively. A literature review is given by Clift, Grace, and W
ber @3#. Some recent numerical simulations concerning
two-dimensional flow around cylinders are~a! Fornberg@4#,
who studied the viscous flow past a circular cylinder a
investigated the width and length of the wake region;~b!
Feng, Hu, and Joseph@5#, who looked at the sedimentatio
of circular and elliptical particles and studied their intera
tions with the fluid, the wall, and each other; and~c! Chen,
Pritchard, and Tavener@6# who investigated the stability an
bifurcation of steady flow past a circular cylinder by lookin
at the formation of steady vortex pairs. We will use extens
numerical simulations of the full Navier-Stokes equations
simulate the sinking of cylinders in two-dimensiona
bounded geometries. The obtained terminal velocities ag
perfectly well with the implicit expression for low Reynold
numbers when finite-size effects of the numerical algorit
are taken into account@7#. By using nine different system
sizes we are able to give, as an approximation of the w
correction factor for cylinders, an expression up to seco
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order in the ratio cylinder to system size. By doing this f
nine different cylinder diameters, we seek auniversalcurve
for the wall correction factor up to moderate cylinder to sy
tem ratios and discuss its validity.

The paper is organized in the following way: in Sec. II w
write down the relevant equations and give the terminal
locity for spheres and cylinders in the creeping flow limit.
Sec. III, we briefly explain the numerical technique used a
present a first approximation of the wall correction factor
cylinders in Sec. IV. We conclude this paper by giving
outlook to possible further applications.

II. PHYSICAL BACKGROUND

Since the velocities in our situation are well below t
speed of sound, the fluid is treated as incompressible.
dynamics of the fluid are then given by the following Navie
Stokes equations written in dimensionless units:

]vW

]t
1~vW •“ !vW 52“p1

1

Re
¹2vW 1 fW , ~1!

wherevW stands for the fluid velocity andp for the pressure
measured in a fixed laboratory system. A possible exte
volume force, e.g., gravity, is denoted byfW . The continuity
equation simplifies to

“•vW 50. ~2!

The only parameter that describes the physical situatio
the dimensionless Reynolds number Re. Given a charac
istic velocityU, a characteristic lengthL and the viscosity of
the fluid n:5h/r, its definition is

Re:5
UL

n
. ~3!

In our caseU will be the terminal velocity of the particle an
L its diameter.

When a sphere moves through a fluid, a viscous frict
force acts on it. In an ideal three-dimensional system wh
the fluid is at rest at infinity, this viscous force can be d
2808 © 1997 The American Physical Society
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55 2809WALL CORRECTION FACTOR FOR SINKING . . .
rectly calculated from Eqs.~1! in the creeping flow limit
where one neglects the inertia term (vW •“)vW ~Re!1! and
obtains@1,2,8#

Fv56phvr . ~4!

Here r stands for the radius of the sphere andv for its ve-
locity. When this sphere moves under the influence of gr
ity its velocity exponentially reaches a limiting value whic
can be calculated from the equilibrium of forces,

vs5
2

9

rs2r f

h
gr2. ~5!

Herers denotes the density of the sphere andr f the one of
the fluid. When the sphere moves in bounded geomet
e.g., a long tube with radiusR, a wall correction factor has to
be added which can be written as a polynomial inr /R only.
For large aspect ratiosr to R, considering only the linea
term is often sufficient, and one obtains

vs85vsS 12a
r

RD , ~6!

wherea'2.122.4 @1,3,9#.
In two dimensions, the creeping flow equations do n

have a solution that vanishes at the cylinder boundaries
remains finite at infinity which is known as Stokes’ parad
@1#. If one works with Oseen’s equations, an implicit formu
for the terminal velocity can be given@1,2# which can only
be solved numerically, e.g., usingMATHEMATICA or MAPLE,

vc

lnS 3.7 n

rvc
D 5

1

4

rc2r f

h
gr2. ~7!

Another interesting situation arises when the moving p
ticle approaches another particle or a solid wall. Due to
backflow of the fluid, additional repulsive forces come in
play that diverge as the inverse of the separation dista
@10#. For ideal smooth surfaces this would mean that
surfaces never touch each other. This behavior is visibl
our simulations when a particle approaches the bottom w
It decelerates due to the additional forces from the backfl
of the fluid, but very fine grids are needed to obtain qua
tative data. The results presented in this paper are me
concerned with the terminal velocity and its dependence
D52r and the system sizeL. The system is sketched in Fig
1, and the height was chosen asH53L to assure that the
value of the terminal velocity was not affected by the pr
ence of the bottom wall.

III. NUMERICAL IMPLEMENTATION

When Eqs.~1! are discretized in time first, the gener
form reads

vW n112vW n

Dt
1uF ~vW n11

•“ !vW n112
1

Re
¹2vW n112 fWn11G

1~12u!F ~vW n•“ !vW n2
1

Re
¹2vW n2 fWnG1“pn1t50, ~8!
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where the parameteru fulfills 0,u,1. Foru50 we end up
with anexplicit scheme, and foru51 we get afully implicit
scheme. The former has the advantage that the finite dif
ence scheme can be written down more easily, but the
strictions on the maximal time step for numerical stabil
made it infeasible for our case@11,7#. A very efficient
method results foru5 1

2 called theCrank-Nicolson scheme,
which we used to obtain the results presented in this pape
is second order accurate in time as well, when the param
t is set to a value of12. The partial differential equations ar
solved by an iterative procedure which is based on apply
the artificial compressibility methodat each time step
@11,12#. Since the scheme in Eq.~8! is linearly uncondition-
ally stable foru> 1

2, one can choose a maximal time ste
given by the physical situation, which in our case was
fraction of the grid size divided by the estimated termin
velocity. This allows us to obtain the terminal velocity of
sinking particle with much fewer time steps as compared
an explicit algorithm.

In order to avoid unphysical oscillations in the solutio
we use astaggered grid@13# which is usually referred to as
marker-and-cell~MAC! method @11#. Each grid point on
which a particular velocity component is evaluated is shif
half a grid spacing along its Cartesian direction with resp
to the corresponding pressure value. Another advantag
this grid is that no boundary values for the pressure
needed, which is often not available or hard to obtain exp
mentally. The pressure is only calculated at interior poin
The generalization of the MAC grid to three spatial dime
sions is straight forward.

Since we want to study the motion of particles in fluid
we have to account for the interactions between particles
fluid. For simplicity, we will only treat spherical particles i

FIG. 1. Sketch of the physical system.
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2810 55GERALD H. RISTOW
two-dimensional boxes, but other shapes can be easily
structed. The grid spacings in different directions are all c
sen as being equalDx[Dy([Dz). They must be chosen
significantly smaller than the particle in order for our a
proach to work. We used values ofD5(3222)3Dx for the
results presented in this paper. The particle can be put at
arbitrary position in the fluid and all velocity grid points th
are covered by the particle will be forced to have the pa
cle’s velocity at the next time step. This means that the p
ticle introduces an additional, moving boundary to our co
putation. The force acting on the particle by the fluid
calculated by integration of the stress tensors over the par-
ticle’s surface@10#,

Fs5E
surface

s•nWdA, ~9!

wherenW stands for the normal vector of a surface elem
pointing outwards and

s52pI1h„“vW 1~“vW ! t…. ~10!

Here a matrix notation is used, andI stands for the unity
matrix. The stress tensor is evaluated along the Carte
coordinate lines from interior to exterior points along t
surface.

IV. WALL CORRECTION FACTOR

At time t50, we place a cylinder at rest in our two
dimensional system sketched in Fig. 1. The force acting
the cylinder is calculated via integration of the stress ten
over its surface. For small times the sinking velocity is giv
by vs(t)'2gt, since the viscous forces are still negligibl
With increasing velocity the viscous forces become larg
and finally an equilibrium of forces leads to a constant si
ing velocity which depends on the diameterD, the system
dimensionL, and the viscosity of the fluidh. This is shown
in Fig. 2, where the sinking velocity as function of time
presented for three different cylinder diameters and a

FIG. 2. Vertical velocity as a function of time for different cy
inder diameters,D51, 2, and 3 cm~top to bottom!, respectively.
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dimension of 25375 cm. The approach of the terminal ve
locity is clearly visible. The rather regular fluctuations f
the smallest particle,D51 cm, stem from the fact that th
particle covered at most five grid points compared to alre
25 for D52 cm. Since it falls nearly vertically with a con
stant velocity, the variations in the number of grid poin
covered by the particle and used in the force calculation
relatively large, and they lead to visible regular oscillation
For larger particles, these regular patterns disappear and
remaining fluctuations come from the fluid motion.

In Ref. @7#, we looked at a fixed system size of 10330 cm
and varied the number of grid points for different cylind
radii in order to study the finite-size effects of our approa
The grid spacingDx varied from 0.3125 to 0.078 125 cm
and by linear extrapolation we obtained the cur
limDx→0vc(r ) shown in Fig. 3. For comparison, we also giv
the numerically obtained solution to Eq.~7! for Reynolds
numbers up to 1 drawn as thick black line. By doubling t
grid size in both directions from 643192 to 1283384 points
the value ofvc(D) changed by 23% forD50.5 cm and by
only 4.5% forD53 cm. Our extrapolated value forD50.5
cm lies exactly on the analytic curve, which validates o
algorithm and shows that quantitative data can be obtai
by this numerical method.

Whereas the finite-size error due to the grid is a pur
numerical artifact, the dependence of the terminal veloc
on the container geometry is well observed experiment
@3#. For spheres in three-dimensional systems an analytic
pression exists for the creeping flow limit. The relevant p
rameter is the ratio of the sphere diameter to the tube di
eter (D/L). The ratio vs(D/L)/vs(0) is called the wall
correction factor, and a first approximation, linear inD/L, is
given by Eq.~6! @1,3,9#. For cylinders in two dimensions on
cannot derive an analytic expression for the wall correct
factor, since not even an explicit formula forvc

` :5vc(0)
exists. We used extensive numerical studies using the
plicit method outlined in Sec. III to obtain an expression f
the wall correction factor for cylinders. The diameterD was
varied from 0.5 to 3.5 cm, the grid spacing was set to

FIG. 3. Extrapolated terminal velocity for the limitDx→0 as a
function of cylinder diameter. The thick line in the lower left corn
is the analytic solution using Oseen’s equations.
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55 2811WALL CORRECTION FACTOR FOR SINKING . . .
constant value ofDx50.156 25 cm in order to avoid finite
size effects, and the viscosity of the fluid was set to 1 g/cm
which is 100 times the value of water~water-glycerin mix-
ture or certain oils!. Since the only parameter that enters t
Navier-Stokes equations~1! is the Reynolds number one ca
equally well consider water and divide all lengths by 100

All four boundaries are considered as solid contai
walls with a no-slip boundary condition for the fluid. In ord
to quantify the effect of these boundaries, we show in Fig
the computed streamlines for box sizes of 10320 cm ~a!,
20360 cm~b!, and 30390 cm~c!. The corresponding time
after particle release are 3.6 s~a!, 7.2 s ~b!, and 1.1 s~c!,
respectively, and the particle diameter is 2 cm. The particl
located in the middle between the two vortices, and the R
nolds numbers calculated from the particle’s diameter
velocity are shown in the figure. The grid size w
643192 points. Due to the backflow effect, the particle s
tling is strongly affected by the ratioD/L for the geometries
considered~cf. Fig. 2!. The two vortices have the same si
for case~a!, but become clearly asymmetric for case~c!,

FIG. 4. Streamlines for box sizes of 10320 cm~a!, 20360 cm
~b!, and 30390 cm ~c!, and a particle diameter of 2 cm.
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which is the start of the wake oscillations found experime
tally @3#.

It is reported that for cylinders wake oscillations start f
Re. 30, and wake shedding for Re. 40 @3#. To demon-
strate that our algorithm is capable of resolving this chan
in flow pattern for the grid sizes used, we show in Fig. 5 t
computed streamlines for a sinking particle with diameter
2.8 cm in a box of 30390 cm at different times after particl
release. The particle is located between the two lowest v
tices, and the grid size was again 643192 points. The termi-
nal velocity was220.5 cm/s, which was reached after 1.5
and gives Re5 57.4. The wake oscillations which lead t
wake shedding in this case are clearly visible in the th
picture when the particle has nearly reached the bottom w
Similar pictures can be found in Ref.@5# for the settling of
circular and elliptical particles.

In Fig. 6, we show the values of the terminal velocity f
cylinders with different diameters as function of the ra
D/L. The top curve is forD50.5 cm, andD was varied in
steps of 0.5 cm to giveD53.5 cm for the lowest curve. The

FIG. 5. Streamlines for a particle with diameter of 2.8 cm in
box of 30390 cm at different times after particle release.
t

FIG. 6. Terminal velocity as
function of the ratioD/L. Each
curve corresponds to a differen
cylinder diameter withD50.5,
1, 1.5, 2, 2.5, 3, and 3.5 cm~top
to bottom!.
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2812 55GERALD H. RISTOW
solid lines are quadratic least square fits for data points
longing to each value ofD. It is remarkable that all data
points lie on the corresponding curve.

By extrapolating each curve toD/L→0, we obtain the
value of the terminal velocityvc

`(D) for an infinite system.
These are plotted in Fig. 7, where the error bars are less
the symbol size. This can be directly compared with Fig.
Please note that the curve forD/L→0 starts off too high at
D50.5 cm compared to the numerically solved implic
equation~7!, since finite-size effects could not be taken in
account due to computer limitations. Nevertheless, by us
the results presented in Ref.@7#, one can estimate that th
value forvc

`(0.5) will reduce by 50% but only by 10% fo
vc

`(3.5). This will bring the solution of the analytic resu
and the numerical simulation in perfect agreement ag
Figure 7 also shows that the terminal velocity does not h
a simple scaling relation with the cylinder radius, and a go

FIG. 7. Extrapolated terminal velocity for the limitD/L→0 as a
function of cylinder diameter.

FIG. 8. Rescaled terminal velocities as a function ofD/L. The
solid line is the best quadratic fit to the data points.
e-

an
.

g

n.
e
d

fit was obtained byvc
`(D)59.2D0.8 which is shown as a

solid line. But the formula is only valid in this limited regim
since towards both end points systematic deviations are
ready visible. Also the slope in the limit limD→0vc

` does not
agree with the analytic result, Eq.~7!.

By looking at Fig. 6, one might hope that by shifting an
stretching each curve all curves will fall on one univers
curve. In order to test this we use as ansatz for the w
correction factor for cylinders

f ~D/L !:5
vc~D/L !

vc
` . ~11!

This ratio is plotted in Fig. 8 for cylinder diameters rangin
from 1.5 to 3.5 cm. A quadratic least square fit using all d
points shown is drawn as solid line. The smaller the dia
eter, the more the data points systematically deviate fr
this universalcurve for larger ratiosD/L. For D50.5 and
1.0 cm only the two leftmost points will lie on this curve. T
quantify this result we write

f ~D/L !'12a1
D

L
2a2SDL D 2, ~12!

and give the values ofa1 and a2 in Table I for different
cylinder diameters. The larger the diameter becomes, the
important the quadratic term in formula~12! becomes, which
means that as a final result for the wall correction factor
cylinders we obtain

vc~D/L !

vc
` 'S 121.14

D

L D . ~13!

V. CONCLUSIONS AND OUTLOOK

We studied the motion of cylinders under gravity~two-
dimensional system! in viscous fluids and bounded geom
etries. The dependence of the terminal velocity of the cy
der on the diameter to box width ratio (D/L) was
investigated numerically using the full Navier-Stokes equ
tions. We obtained a first approximation of the wall corre
tion factor as a power series inD/L and discussed its valid
ity.

The presented algorithm, an implicit finite differenc
method, is easily extendable to studying real thre
dimensional systems, and will be used to go beyond
creeping flow result for the wall correction factor of sphere
Eq. ~6!. When more time is spent to achieve a faster conv
gence of the numerical method, e.g., using conjuga
gradient or multigrid methods seem promising@11#, it will be
possible to study lubrication effects and sedimentation pr
lems in more detail as well.

TABLE I. Coefficientsa1 anda2 for the quadratic approxima
tion f (D/L) for different cylinder diametersD.

D 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 3.5

a1 1.86 0.99 1.53 0.98 0.99 0.97 1.16 1.14 1.1
a2 6.34 5.23 1.07 2.21 1.51 1.13 0.46 0.33 0.3
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